Fault-Tolerant Measurement-Based Quantum Computing with Continuous-Variable Cluster States
نویسندگان
چکیده
منابع مشابه
Fault-tolerant quantum computation with cluster states
The one-way quantum computing model introduced by Raussendorf and Briegel fPhys. Rev. Lett. 86, 5188 s2001dg shows that it is possible to quantum compute using only a fixed entangled resource known as a cluster state, and adaptive single-qubit measurements. This model is the basis for several practical proposals for quantum computation, including a promising proposal for optical quantum computa...
متن کاملEfficient measurement-based quantum computing with continuous-variable systems
We present strictly efficient schemes for scalable measurement-based quantum computing using continuousvariable systems: These schemes are based on suitable non-Gaussian resource states, ones that can be prepared using interactions of light with matter systems or even purely optically. Merely Gaussian measurements such as optical homodyning as well as photon counting measurements are required, ...
متن کاملUniversal quantum computation with continuous-variable cluster states.
We describe a generalization of the cluster-state model of quantum computation to continuous-variable systems, along with a proposal for an optical implementation using squeezed-light sources, linear optics, and homodyne detection. For universal quantum computation, a nonlinear element is required. This can be satisfied by adding to the toolbox any single-mode non-Gaussian measurement, while th...
متن کاملFault-tolerant quantum computing with color codes
We have just completed a thorough, multi-year study of fault-tolerant quantum computation with color codes. These codes are amazing—one way to think about them is as a family of codes which generalize the Steane code not by concatenation but by lattice embedding [1]. Our study of fault-tolerant computing with these codes is complete with analytic bounds, numerical simulations, multiple noise mo...
متن کاملFault Tolerant DNA Computing Based on Digital Microfluidic Biochips
Historically, DNA molecules have been known as the building blocks of life, later on in 1994, Leonard Adelman introduced a technique to utilize DNA molecules for a new kind of computation. According to the massive parallelism, huge storage capacity and the ability of using the DNA molecules inside the living tissue, this type of computation is applied in many application areas such as me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2014
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.112.120504